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Monte Carlo estimate of the dynamical critical exponent of 
the 2~ kinetic Ising model 

J K Williams+ 
Department of Physics, University of Edinburgh, James Clerk Maxwell Building, G n g s  
Buildings, Mayfield Road, Edinburgh, EH9 3J2, UK 

Received 19 June 1984 

Abstract. This paper describes a Monte Carlo study of the ZD kinetic Ising model. The 
long-time behaviour of various time-delayed correlation functions is investigated by renor- 
malisation group methods. This long-time behaviour can be described in terms of a simple 
exponential relaxation of the magnetisation which enables a reliable estimate of the 
dynamical critical exponent, z, to be made. 

1. Introduction 

A substantial amount of recent work in critical dynamics has been devoted to the need 
to develop effective real space dynamic renormalisation group methods (Mazenko and 
Valls 1982 and references therein). The two-dimensional kinetic Ising model has 
provided a suitable and demanding testing ground, with the determination of the 
dynamic exponent, z, being the main focus of attention (Mazenko and Valls 1981). 
Methods which give good results for static critical phenomena often behave very 
erratically when applied to dynamic properties; this has been attributed to the narrow- 
ness of the asymptotic dynamic critical region relative to the asymptotic static critical 
region. A promising new approach involves the combination of Monte Carlo computer 
simulations at the critical point T,, with real space renormalisation. The idea of Monte 
Carlo renormalisation was first applied to static critical phenomena, and has been very 
successful, producing accurate and reliable results (Swendsen 1982 and references 
therein). Several variants of the method have evolved and, in particular, a scheme 
suggested by Wilson (unpublished) has been extended by several authors (Tobochnik 
er a1 1981, Katz et a1 1982) to deal with dynamic critical phenomena. 

The principal limitation of standard Monte Carlo techniques is the finite-size effect: 
this is most acute in the critical region and prevents the accurate determination of 
critical properties. The Wilson scheme confronts the finite-size problem by using two 
simulations on lattices of different sizes. Starting with two lattices, which differ in size 
by a factor b, a standard Monte Carlo simulation is employed to generate a sequence 
of spin configurations characteristic of the starting Hamiltonian at T, on a finite lattice. 
From these configurations a sequence of block-spin configurations is created by a real 
space renormalisation transformation, typically by ‘majority-rule blocking’, which 
reduces the linear dimensions of the system by a factor b. This sequence of block-spin 
configurations is characteristic of a renormalised Hamiltonian, in the sense that any 
correlation function calculated from these configurations is an average over the block- 
spin configurations weighted by the Boltzmann factor appropriate to that renormalised 
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Hamiltonian. The procedure may be iterated, and  since the simulations start on the  
critical surface further iterations are expected to keep the renormalised Hamiltonians 
on the critical surface and  to move them towards a fixed point. If m blockings are 
performed on the smaller lattice and rn + 1 on the larger lattice the two block-spin 
lattices produced will have the same number of block spins, both systems will show 
finite-size effects but these effects should be the same for both. If the Hamiltonian 
derived from m iterations on the smaller lattice equals that derived from m + 1 iterations 
on the larger lattice, then the correlation functions based on these Hamiltonians will 
be equal. According to dynamic scaling if the length is scaled by a factor b then time 
scales by a factor b‘, which defines the dynamic critical exponent z. This means that 
if a time-dependent correlation function, f( t )  say, is measured on the smaller lattice 
after m blockings and the same correlation function, f(r‘), is measured on the larger 
lattice after m + 1 blockings then they are expected to ‘match’ at times t and t ’ ,  where 
t’ /  t = b‘ (where time is measured in units defined on the ‘bare’ lattices). By matching 
various time correlation functions z can be determined. 

In this paper we extend the earlier work of Tobochnik et a1 (1981) and  of Katz et 
al (1982) on the ZD kinetic Ising model, employing a novel updating scheme and  
exploring both larger lattices and longer time delays in the correlation functions. As 
in the previous studies we investigate the time dependence of the spin and  block-spin 
autocorrelation functions and  also the time-delayed spin and  block-spin nearest- 
neighbour correlation functions. Our results, giving z = 2.13 (3) ((3) indicating the 
estimated error in the final digit), suggest that the earlier work overestimated the value 
of z by a few per cent; indeed Katz et a1 encountered some problems in obtaining a 
unique value for z from their data. More specifically, they attempted to match 
correlation functions at a given time delay, t, by fitting their data to a simple exponential 
decay (the expected long-time behaviour), unfortunately the value obtained for z was 
dependent on  the value of t ( z  decreasing with increasing t ) ;  an  indication, perhaps, 
that the time delays were not long enough for the correlation functions to attain their 
true asymptotic behaviour. In our own simulations we find that a simple exponential 
decay fits the long-time behaviour extremely well and, furthermore, the same decay 
times are found for the local spin and block-spin time-delayed correlation functions 
and  also for the relaxation of the magnetisation. Since the magnetisation is the only 
slow mode in the model and  is ‘captured’ by the long-time behaviour of all the 
correlation functions, as indicated by the decay times found, we can be confident that 
our data lies in the required asymptotic long-time regime. The renormalisation or  
blocking transformations serve to enhance the amplitude of this mode in the block-spin 
correlation functions and  the scaling behaviour of this amplitude lends further credence 
to the claim that we are seeing the true critical behaviour. 

The structure of the paper is as follows. In § 2 we define the model and briefly 
discuss some of its properties. In § 3 we present the basic calculational procedures 
and the results of our simulations. Finally in § 4 we summarise our results and add  a 
few concluding remarks. 

2. The kinetic Ising model 

The model we will consider is the 2~ kinetic k i n g  or  Glauber model which belongs 
to the dynamic universality class where the non-conserved order parameter is the only 
slow mode (‘model A’ in the usual terminology). The model consists of N sites 
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belonging to an  L x L square lattice with Ising spins, at, located at each site i, the spin 
coordinate, U,, assumes the values * I .  A configuration of the model is completely 
described by specifying the state of all the spins {U , ,  u2,. . . , ( T ~ }  and is denoted by 
{ (T}. We only consider nearest-neighbour interactions, so the Hamiltonian of the system, 
including the inverse temperature factor (-@), is 

where the summation extends over all nearest-neighbour pairs. The dynamical evo- 
lution of the model is controlled by a Master equation for the probability function 
P ( { a } ;  t )  which gives the probability that a configuration { U }  occurs at time t given 
some initial probability function at time t = 0. The Master equation is given by 

a 
- P ( { o } ;  t ) =  c ( P ( { g } ' ;  t)wc{a)'+{(T))--P({a); t)W({(T}+{m)')) ( 2 . 2 )  
a t  {U)' 

where W ( { a )  + {a} ' )  is the transition probability per unit time for a configuration to 
change from {(T} to {a}'. We are free to choose the form of the transition probabilities 
W, subject to the requirements of detailed balance and ergodicity which ensure that 
the probability function P ( { a }  ; t )  evolves towards the correct equilibrium probability 
function Peq({u}). The dynamic exponent z, being a universal quantity, should be 
independent of the choice of the transition probabilities. 

Following Yalabik and  Gunton (1979) we can rewrite the Master equation in matrix 
form, 

dP 
a t  
_-  - LP ( 2 . 3 )  

P ( { a } ;  t ) = P e q ( { a } ) + a ,  eAl 'P, ( {a} )+a,e"z 'Pz({a} )+.  . .  ( 2 . 5 )  

where P[({(T}) and A ,  denote the ith eigenvector and  eigenvalue of L respectively, and  
the a, are time-independent expansion coefficients. Detailed balance guarantees that 
Peq({a}) is an  eigenvector of L with eigenvalue zero. For a finite system all other 
eigenvalues of L are negative so that P ( { a } ;  t )  eventually decays to equilibrium. As 
L is invariant under a global inversion of the spins the eigenfunctions can be divided 
into odd and  even functions. From equation ( 2 . 5 )  it is clear that the long-time behaviour 
of any odd  or even correlation function will be determined by the smallest odd  or  
even eigenvalue respectively. In principal we might expect different dynamic exponents 
for thermal (even) and magnetic (odd) correlation functions but it is believed that 
there is only one relevant time scale in critical dynamics just as there is only one 
length scale, the correlation length, in the statics. So for the rest of this paper we will 
only consider odd correlation functions and we will be concerned with calculating 
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lA';l, the smallest odd eigenvalue. This eigenvalue determines the critical relaxation 
time and for an infinite system we expect, 

(2 .6)  IAYI - [( T -  Tc)/ ?-cl" 
and  for a finite system at Tc finite size scaling predicts 

IAY(L)l-' - L L  (2 .7)  

where v is the correlation length exponent. 

3. Method and results 

The basic ideas behind the dynamic Monte Carlo renormalisation group method have 
already been briefly outlined in the introduction; for a more detailed discussion see 
Tobochnik et a1 (1981). As in the previous studies we consider the following types of 
correlation function 

where L is the lattice size, m is the number of renormalisation transformations 
performed, a/"' is a block spin taking on the values +1, N'"' is the number of block 
spins on the renormalised lattice, and (U) denotes nearest-neighbour pairs. We estimate 
these correlation functions from Monte Carlo simulations on lattices of size L = 8, 16, 
32 and 64. The simulations provide sequences of spin configurations characteristic of 
the Hamiltonian (2.1 ) at critically, Tc. A 'majority rule' renormalisation transformation 
is performed on each configuration to obtain sequences of block-spin configurations. 
The 'majority rule' transformation involves dividing the lattice into 2 X 2 blocks and  
assigning block spins of $1 or -1 according to the sign of the sum of the spins in 
each block; in the event of a zero block sum the block spin is randomly assigned. The 
transformation reduces the linear dimensions of the system by a factor b = 2. This 
procedure can be usefully repeated until the size of the renormalised lattice reaches a 
limit determined by the range of the interactions in the fixed point Hamiltonian; further 
iterations beyond this limit will be strongly affected by finite-size effects. Having 
obtained sequences of spin and  block-spin configurations, we can estimate the correla- 
tion functions by simply averaging over the respective configurations. 

The underlying simulation uses a novel updating scheme to simulate the behaviour 
of the Master equation (2 .2) ,  abandoning the conventional single-spin-flip schemes 
for a multi-spin-flip scheme. This dictates a discrete 'timestep by timestep' approach 
to the dynamics with many spin flips taking place within a single time step. Each 
update can be regarded as being equivalent to N single-spin-flip trials, where all the 
spins on one sublattice are on trial, with the other sublattice passive, before the roles 
of the sublattices are interchanged. The N spin-flip trials constitute one update and  
define a unit time step of one Monte Carlo Step per spin (Mcdsp in ) .  Although there 
are dynamical differences between this scheme and  the usual random single-spin-flip 
schemes, arising from the sequential order in which the spins are sampled, we d o  not 
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expect the universal critical behaviour to be affected by the choice of update scheme. 
A more detailed discussion of update schemes and dynamics giving support to the 
above claim can be found in Williams (1984). Within this update scheme we still have 
the freedom to choose the form of the transition probabilities for the spin-flip trials 
and we use both the Metropolis and the Glauber schemes, providing a partial check 
on the universal nature of the results. This rather unusual choice of updating, from 
the dynamical point of view, has been made to exploit the parallel achitecture of the 
array processor (ICL DAP) used for the simulations; all the spin-flip trials on a given 
sublattice are processed simultaneously allowing an enormous saving in computer time 
and enabling long simulations to be undertaken. 

Some details of the simulations are given in table 1 for the longest runs, these used 
hot starts and Metropolis flipping probabilities. These runs were repeated with cold 
starts, and additional shorter runs, using both Metropolis or Glauber updating and 
hot or cold starts, were also undertaken. The results for r(r) and E (  t )  for the 32 x 3 2  
and 16 x 16 lattices, taken from the runs given in table 1, are shown in table 2 and 
table 3 respectively. The numbers in parentheses give the approximate statistical 
uncertainty in the last digit(s) as estimated either from the spread of values obtained 
from blocks of data evaluated separately (for the larger lattices) or from the sample 
to sample spread of values (for the smaller lattices). In table 4 we present results for 
the static quantity E ( 0 )  for all four lattice sizes (same runs as table l ) ,  together with 
data from Tobochnik et a1 and Katz et al. 

Table 1. Simulation details. 

Lattice size (L) 64 32 16 8 

Length of run for each sample: 512 3 20 256 128 
Steps discarded for equilibration+ 20 10 10 2 

Number of samples 1 4 16 64 

+ Units of IO4 Monte Carlo Steps/spin. 

Since the simulations are performed at criticality the renormalised Hamiltonians 
are expected to approach a fixed point and we expect the correlation functions to 
match, for sufficiently large m, according to 

I-( L, m ; t )  = r( bL, m + 1 ; b'r) 

E ( L , m ;  t ) = E ( b l , m + 1 ;  b't). 

Inspection of the results in table 4 confirms this behaviour for the static quantities 
E (  L, m ; 0) and E (  bL, m + 1 ; 0), with matching to within statistical error for m > 2. 
This fairly rapid convergence towards the fixed point is typical for the ZD Ising model 
and 'majority rule' blocking; see for instance Swendsen (1982). Our results for the 
static quantities are in good agreement with those of Katz er a1 but do not agree, at 
least for the renormalised quantities, with those obtained by Tobochnik er al. This 
discrepancy in the renormalised correlation functions may arise from the choice of tie 
breaker used when the sum of the spins in a block is zero; however, while the correlation 
functions seem sensitive to this choice the universal quantities are not as indicated by 
the agreement in the estimates of z by both Tobochnik er a1 and Katz et al. 



54 J K Williams 

Table 2. Results for U L ,  m ;  I )  

t 
~ 

80 

I60 

240 

320 

400 

480 

560 

m L = 3 2  t m L = 1 6  

0 
I 
2 
3 

0 
I 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
I 
2 
3 

0 
1 
2 
3 

0.4224 (61 
0.4979 ( 7 )  
0.5906 ( 9 )  
0.6991 ( I O )  

0.3951 (8 )  
0.4658 (IO) 
0.5526 ( I  I )  
0.6543 ( 13) 

0.3711 ( I O )  
0.4375 ( I 1  ) 
0.5188 (13)  
0.6141 (161 

0.3483 ( 1 I ) 
0.4105 (13)  
0.4869 (16) 
0.5764 (19)  

0.3269 (12) 
0.3854 ( 1 5 )  
0.4570 ( 17)  
0.5410 (20) 

0.3069 (14)  
0.3618 (16) 
0.4291 (19) 
0.5081 (23 )  

0.2882 (16) 
0.3396 (18)  
0.4028 (22) 
0.4770 (26) 

20 
0 
I 
2 

40 
0 
I 
2 

60 
0 
I 
2 

80 
0 
1 
2 

100 
0 
1 
2 

I20 
0 
I 
2 

I40 
0 
I 
2 

0.5008 (4 )  
0.5897 (5 )  
0.6968 ( 5  i 

0.4662 ( 5 )  
0.5490 ( 5 )  
0.6485 (6 )  

0.4347 (5 )  
0.5120 (6 )  
0.6050 (7 )  

0.4054 (6 )  
0.4775 ( 7 )  
0.5643 (8)  

0.3782 ( 7 )  
0.4453 ( 9 )  
0.5262 ( I O )  

0.3530 (8)  
0.4159 ( 9 )  
0.4914(11) 

0.3300 ( 8 )  
0.3887 (9 )  
0.4595 (13) 

In order to match the dynamic correlation functions we attempt to fit the data to 
a simple exponential decay, e.g., 

l n T ( L , m ;  t ) = a ( L , m ) - A ( L , m ) t .  (3.3) 

Typical results are shown in figure 1 and values for a ( L ,  m )  are given in table 5. We 
find that A ( L ,  m )  is independent of m and values of A ( L )  are given in table 6. We 
also get similar results for E ( L ,  m ;  t ) ,  obtaining the same values for A ( L )  within 
statistical errors as those obtained from r ( L ,  m ;  t ) ;  indeed tables 2 and 3 show that 
for large t (in this case all the data points given!) E ( L ,  m ;  t )  - 2 r ( L ,  m ;  t ) .  This 
suggests that we are seeing the critical decay mode characterised by A ? (  L ) ,  the smallest 
odd eigenvalue of the Liouville operator. The long time behaviour of the correlation 
functions reflects the decay of the residual magnetisation which is present on a finite 
lattice even at T,. A typical record of the magnetisation fluctuations is shown in figure 
2 :  we see that the average magnitude of the magnetisation, MO = ( ~ X C T ~ ) ,  is quite large 
and for most of the time the maget i sa t ion  fluctuates about either +MO or  -MO with 
sudden switches from one sign of the magnetisation to the other. This behaviour can 
be understood in terms of the very strong increase in ordering just below T, and the 
enhancement of this ordering by the imposed periodic boundary conditions. The 
dominant mechanism for the magnetisation reversal involves the sweeping of a pair 
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Table 3. Results for E ( L ,  m ;  f). 

5 5  

t 
~ 

0 

80 

I60 

240 

320 

400 

480 

560 

m L = 3 2  

0 
I 
2 
3 

0 
I 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
I 
2 
3 
0 
1 
2 
3 

0 
1 
2 
3 

1.4334 ( 2 )  
1.429 1 (4)  
1.4651 (7 )  
1.5466 (12) 
0.8449 (13) 
0.9959 ( I  5) 
1.1809 (19) 
1.3964 ( 2 2  j 

0.7903 ( 16) 
0.9317 (19) 
1.1052 (23) 
1.3085 (27) 

0.7422 ( 18) 
0.8749 ( 2 2 )  
1.0375 127) 
1.2280 ( 3 2 )  

0.6965 (221 
0.8209 (27) 
0.9737 (33)  
1.1526 (38 )  

0.6538 (25)  
0.7708 (30)  
0.9140 (35)  
1.0819 (42) 
0.6139 (28 )  
0.7236 (33) 
0.8583 (39 )  
1.0163 (461 

0.5763 (31 1 
0.6793 (37 )  
0.8056 (441 
0.9538 (53) 

t m L = 1 6  

0 
0 
I 
2 

20 
0 
1 
2 

40 
0 
1 
2 

60 
0 
I 
2 

80 
0 
1 
2 

100 
0 
1 
2 

I20 
0 
I 
2 

140 
0 
1 
2 

1.4532 ( 3 )  
1.4704 (7 j 
1.5479 110) 

1.0015 (7)  
1.1793 (13) 
1.3927 ( 15) 

0.9324 (9) 
1.0982 (IO) 
1.2972 ( I I ) 

0.8694 ( I O )  
1.0239 ( 12) 
1.2098 ( 14) 

0.8109(11) 
0.9550 (14) 
1.1288 1 1 5 )  

0.7562 (14)  
0.8905 ( 16) 
1.0524 i 19) 

0.7061 116) 

0.9827 (21  
0.8316(19) 

0.6600 ( 16) 
0.7777 (18) 
0.9191 122) 

Table 4. Results for E(  L, m: 0 ) .  

m L = 6 4  m L = 3 2  m L = 1 6  m L = 8  

0 1.4236(5) 
1 1.4084(10) 0 1.4334(2)  
2 1.4240(18) 1 1.4291 (4 )  0 1.4532(3) 
3 1.4653(32) 2 1.4651 ( 7 )  1 1.470417) 0 1.4918(2) 
4 1.5462149) 3 1.5466(121 2 1.5479(10) I 1.5514(4) 

Data from 0 1.4336(3)  
Katz et al I 1.4287(6) 0 1.4519(9) 

2 1.4642(12) I 1.4680(18) 
3 1.5442(22) 2 1.5439(32) 

Data from 
Tobochnik er a/  

0 1.4529(11) 
I 1.4585 (37) 0 1.4909(6) 
2 1.6059(46) 1 1.6039(12) 
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Table 5. Results for - a ( L ,  m). 

m L = 6 4  m L = 3 2  m L = 1 6  m L = 8  

0 0.9731 (75) 
1 0.8086(76) 0 0.7989(17) 
2 0.6370(75) 1 0.6343 (17) 0 0.6238 (6) 

2 0.4636(17) 1 0.4604(6) 0 0.4463 (4) 3 0.4637 (74) 
4 0.2945 (67) 3 0.2950(17) 2 0.2934(6) 1 0.2867 (4)  

Table 6. Results for A ( L ) .  

L = 6 4  L = 3 2  L =  16 L = 8  

A ( L )  1.82 (8) 7.99(9) 34.81 ( I O )  139.2 12) 

Units of  IO-^ (Mcs/spin)-’ .  

I 
-0 2 1  

- 3  8 

- 1  0 
0 100 200 390 400 500 600 

i l - : s i s p i n  1 

Figure 1.  A plot of Log T ( L ,  m :  t )  against t measured in Mcs/spin. Errors are comparable 
to the symbol size. Line a ;  L = 32, m = 3: line b;  L = 16, m = 2. 

of interfaces across the lattice; the interfaces arise from the coalescing of large droplets 
of overturned spins and once formed move apart, eventually meeting and annihilating 
on the ‘far side’ of the lattice. The characteristic time for this reversal is reflected in 

Further support for this picture comes from considering the magnetisation-magneti- 
A R L ) .  

sation autocorrelation function defined by 

r M ( L ;  t )  = (M(t)M(o))/(M(oy’M(o)) (3.4) 

M ( t )  =c ar(t). 

where 

I 

We find that the long-time behaviour of this quantity is again characterised by the 
same exponential decay 

I n r M ( L ;  t ) =  C ( L ) - A M ( ~ ) t .  (3 .5 )  
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-1 28 - 

- 1 9 2 -  

0 1003 2000 3000 4000 5000 
f i - c s i s p l n )  

Figure 2. A record of the magnetisation fluctuations on a 16 x 16 lattice 

Results for A ( L )  and A , ( L )  are given in table 7. These results were taken from 
different runs to those used in the blocking analysis (for computational reasons): the 
data for L = 16 was taken from 16 samples running for 10 Mcs/spin (for each sample) 
and for L = 3 2  it was taken from four samples running for I O ~ c s / s p i n  (for each 
sample). 

Table 7. Results for h ( L )  and A M ( L ) .  

L = 32 L =  16 

A ( L )  8.16(13)  35.07 (12) 
, l , w ( L )  8.14(10) 34.96 ( I O )  

Units of (MCS/Spin)-' 

The final piece of evidence in favour of this picture comes from the way a ( L ,  m )  
scales with m. Each renormalisation transformation reduces the dimensions of the 
lattice by a scale factor b, and close to the fixed point of the transformation the 
block-spin susceptibility should scale according to 

If the long-time behaviour of r( L, m ; t )  and E (  L, m ; t )  is governed by the relaxation 
of the magnetisation fluctuations then the amplitude of this mode, a ( L ,  m ) ,  should 
show similar scaling behaviour to x'"'). Table 8 gives estimates of 7 obtained by 
comparing a ( L ,  m )  for m and m + 1 and using the finite-size scaling form given in 
(3.6). These estimates are in excellent agreement with those obtained by Swendsen 
(1982) from a finite-size scaling analysis of static block-spin (majority rule) correlation 
functions. 

To determine the dynamical critical exponent, z, we can either use (3.2) or, having 
identified A ( L )  with A?(L),  we can use ( 2 . 7 ) .  Estimates z (L ,  L') from simulations on 
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Table 8. Estimates for 7 ( = 2 p / v ) .  

L x L  and L' 

~ ~ _ _ _ _  

m L = 64 L = 3 2  L =  16 L = 8  

I 0.237 0.237 0.236 0.230 
2 0.248 0.246 0.241 
3 0.250 0.243 
4 0.244 

Exact value i. 

x L' lattices are presented in table 9. The error estimates are based on 
making one standard deviation changes in opposite directions on the two lattices. The 
results suggest that we d o  not see the true dynamical critical behaviour on an  8 x 8  
lattice; however from the other sizes and from additional shorter runs we get consistent 
results all yielding (within statistical error) the same value of abut 2.13. This value is 
also confirmed for the simulations employing Glauber rather than Metropolis flipping 
probabilities showing that universality holds as expected. Overall our best estimate is 
z = 2.13 (3),  the error estimate is based on the spread of values obtained from several 
runs and is somewhat subjective due to the need to attribute a weighting to account 
for the different lengths of run etc (the error is probably conservative). This value is 
somewhat lower than the previous estimates of Tobochnik er a1 and Katz er al. It 
seems likely that these earlier studies did not look at long enough time delays as 
indicated, for instance, by the different decay times found for I-( t )  and E (  t )  by Katz 
et al. The fact that, for a given lattice size, we find the same decay time characterises 
the long-time behaviour of all the odd correlation functions which we considered gives 
us confidence that we are looking at the dynamical critical behaviour of the model, 
and leads us to believe we have a more reliable estimate of z. 

Table 9. Estimates of z. 

z (  16, 8 )  = 2.00 ( I  ) 
z(32, 16) = 2.12 (2)  
~ ( 6 4 . 3 2 )  = 2.13 ( 8 )  

4. Concluding remarks 

In summary we are confident that we have found the correct long-time behaviour for 
a given choice of dynamics and  lattice size, and that we see dynamic scaling on the 
larger lattices ( L  = 16, 32, 64). Mazenko and  Valls (1981) point out, however, that the 
existence of a dynamic scaling regime does not guarantee that it is the asymptotic 
scaling regime. The narrowness of the dynamical critical region implies the need to go 
to large length scales before asymptotic behaviour is observed. We cannot, of course, 
rule out the possibility that if we were to investigate even larger systems some new 
behaviour would set in. 

In the light of the preceding remarks we compare our best estimate, z = 2.13 (3), 
with the results of previous studies. As already mentioned our estimate is somewhat 
lower than those of Tobochnik er ul, who obtained z = 2.22 (13) (with a most probable 



Dynamical critical exponent of the ZD Ising model 59 

value 2.17), and Katz et al, who obtained z-2.23; a possible explanation of this 
discrepancy is that it is difficult to match the correlation functions outside the long-time 
regime where a simple exponential decay predominates (the contribution from the 
next lowest eigenvalue is probably not negligible in their data). Other Monte Carlo 
studies using finite-size scaling on lattices of size L 6  16 have given the following 
estimates: z = 2.00 (10) (Angles d’Auriac er a1 1982) and  z = 2.10 (10) (Takano 1982), 
both results were obtained from rather small lattices. Our results are in closest 
agreement with results obtained from high-temperature series expansions and  field 
theory methods. Racz and  Collins (1976) obtained the estimate, z = 2.125 ( I O )  from a 
12 term series; however, many more terms are needed to justify the reliability of this 
result. The field theory estimate given by Bausch et a1 (1981) is z-2.126 which was 
obtained from a Pad6 interpolation between the two-loop result near d = 1 and the 
two-loop result near d =4 .  This close agreement is almost certainly fortuitous but 
probably rules out the possibility that z has a simple value like 2. 

Finally, we conclude with a few remarks about the method. The previous dynamic 
Monte Carlo renormalisation group studies utilised the renormalisation transformations 
directly by explicitly ‘matching’ the correlation functions and  looking for fixed point 
behaviour. In our own simulations we have taken a different, but closely related, 
approach by focussing on the long-time behaviour and  using finite-size scaling, which 
of course is derived from renormalisation group theory, to expose the critical behaviour. 
As a consequence of this approach the matching is done implicitly. We have used the 
blocking transformations in a subsidiary role, namely to confirm the onset of scaling 
behaviour and  that we are exploring the long-time regime (the inverse decay time A ( L )  
is an  RG invariant) ; in this regime determining z by ‘matching’ correlation functions 
or by using finite-size scaling are equivalent. 

In principle, however, the ‘matching’ method should work for shorter times as well 
near the fixed point, since the irrelevant short-time behaviour is ‘integrated out’ in the 
blocking. The ‘matching’ method requires that the effects of irrelevant variables die 
out rapidly upon successive renormalisations; the difficulty lies in finding a sensible 
way of interpreting the data when the contribution from the irrelevant effects cannot 
safely be assumed to be negligible. The alternative procedure of concentrating on the 
long-time behaviour relies on the exponential behaviour setting in ‘cleanly’, in other 
words that the smallest eigenvalue of the Liouville operator is well ‘separated’ from 
the next smallest eigenvalue. It suffers too from the difficulty that the Monte Carlo 
estimates of the correlation functions become less and less accurate as the time delays 
get longer. Nevertheless, we believe the present simulations have provided a reliable 
estimate of z that is consistent with the values found by other techniques. To improve 
on this requires either a much higher order series expansion or further theoretical 
improvements in the Monte Carlo renormalisation group method, particularly in 
understanding the shorter time behaviour. The latter path would seem to be the more 
worthwhile. 
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